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Introduction

« Externally-Bonded FRP Strengthening Systems

— Widely accepted, method of choice, polymer-based (concerns in
fire)

* Textile Reinforced Mortar (TRM) Strengthening Systems:

— Emerged in last 5-10 years

— Repairing damaged or deficient concrete or masonry (axial, shear,
flexure)

— Open-weave carbon fibre fabrics applied using inorganic mortars
— Comparatively low strength, stiffness, adhesion properties

* Fibre Reinforced Cementitious Matrig
— Emerged in last 5 years A

— Non-woven PBO fibre grids applied using
modified inorganic mortars

— Repairing damaged or deficient concrete
— Superior strength, stiffness, adhesion




Research Motivation

 Thermal & mechanical performance
in fire
— A key issue in the application of any
structural strengthening system

* Fire-rated, insulated externally
bonded FRP strengthening systems |
are available ke

— Current design guidance ignores the 1
FRP during fire (even with insulation)

— Ability of FRP strengthening systems to
maintain structural effectiveness under
load at high temperature remains
unproven

— Applications of FRPs are hindered

« It has been suggested that
TRM/FRCM systems may
outperform FRP systems during fire S R
or in elevated temperature service o
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Background

 FRCM:

— Advantages over externally bonded
FRP systems:
* Installation and aesthetics
» Breathability
- Non-combustibility, zero flame spread|

 Mechanical performance at high
temperature?

www.ruredil.it

* Current presentation:

— Pilot study into comparative performance of FRCM
systems
— Tests at ambient & elevated temperatures

— Comparison against externally-bonded
carbon/enoxv FRP strenathenina svstems



QUESTION: How does FRCM compare with °

FRP?

OBJECTIVES:

1. Experimentally investigate the performance of FRCM
flexural strengthening systems for reinforced concrete
structures

— In comparison with externally-bonded FRP systems
— In bond-critical applications without supplemental anchors

— At temperatures that they might experience if insulated and
exposed to a standard fire scenario, or in elevated
temperature service environments

2. Investigate the hypothesis that FRCM systems may
provide superior retention of mechanical properties
at elevated temperature as compared with externally-

bonded FRP



Experimental Programme
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Beam Specimens

* All dimensions in mm
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Shear Strengthening Scheme

* Pilot tests demonstrated shear failures

 Remedial shear strengthening was required
— Inverted U-wraps
— shear strengthening without supplemental anchorage
— Does not significantly affect the flexural strengthening

FRP strengthening system

hear crack
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Testing Matrix

Target Duration
Specimen Primer Fibre Adhesive test of_ No. of
ID system system temp. heating beams
(°C) (hrs)

PC 20 - - - 3
FRP N°1 20 Primer N°11 Carbon Saturant N°11 3
FRPN°220 | Primer N°22 d®Fn | saturant N2 20 - 3

FRCM 20 - XMEEh | X Mesh M750 3

PC 50 - Gold - 3
FRP N°1 50 Primer N°11 Carbon Saturant N°11 3
FRPN°250 | Primer N°22 ciFbon | saturant N°22 50 6 3

FRCM 50 - Y X Mesh M750 3

PC 80 - =0ld - 3
FRP N°1 80 Primer N°11 Carbon Saturant N°11 3
FRPN°280 | Primer N°22 PFon | saturant N°22 80 6 3

FRCM 80 - XMEEh | X Mesh M750 3

1T Commercially available epoxy primelpaodg saturant system currently selling in Italy.

2 Commercially available epoxy primer and saturant system currently selling globally.

3 Commercially available unidirectional carbon fibre fabric currently selling in Italy.




FRCM Installation




Testing Methodology ;
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Failure Modes: 20°C
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Failure Modes: 50°C
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30 -

Shear Failure

Flexural Failure

FRCM 80
o5 | —FRPNo280
—RC 80
— FRP No1 80
20
15
10
5 _
0 ‘
0 1 2 3

Crosshead Displacement (mm)



Failure Modes: 80°C
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Effect of Temperature
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Strength reduction of FRCM beams may be due to reductions
in shear strength of concrete at 80°C, rather than indicating
damage to the FRCM



Aside: Characterization of Epoxy

Resins

 DMTA testing on polymer primer & saturants
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Conclusions

1. The FRCM system can be effectively used, without
supplemental anchorage, to strengthen RC beams in
bending

2. Effects of Temperature:

—  FRP N°1 experienced reductions of 52% at 50°C and 74% at
80°C
—  FRP N°2 experienced reductions of 10% at 50°C and 64% at
80°C
— FRCM experienced reductions of only 6% at 50°C and 28% at
80°C
May represent a reduction in the strength of the concrete rather
than damage to the FRCM system

3. FRCM appears to be a superior candidate for use in

strengthening applications at temperatures of 25°C to
80°C
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Aside: Flame Spread &

UL
FRP systems:

— Loss of the strengthening systems’ mechanical performance during
fire may not be critical if reasonable strengthening limits are imposed

Structural performance is only one of many concerns in
fire:

— Fire severity and fuel load

— Flame spread

— Smoke generation and toxicity

FRP strengthening systems often require flame spread
coatings in interior applications to meet life-safety
objectives in fire

FRCM systems bonded with inorganic mortars:
— Inherently non-combustible

— Can be used unprotected

— Reductions in material and installation costs

— Improved aesthetics



Aside: Aging of Polymer Resins?

 DMTA testing after 3 hrs at high temperature
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