

#### COMPARATIVE PERFORMANCE OF FRP & FRCM SYSTEMS AT ELEVATED TEMPERATURE

#### Dr Luke Bisby, Reader

BRE Centre for Fire Safety Engineering School of Engineering, University of Edinburgh, UK



# Introduction

- Externally-Bonded FRP Strengthening Systems
  - Widely accepted, method of choice, polymer-based (concerns in fire)
- Textile Reinforced Mortar (TRM) Strengthening Systems:
  - Emerged in last 5-10 years
  - Repairing damaged or deficient concrete or masonry (axial, shear, flexure)
  - Open-weave carbon fibre fabrics applied using inorganic mortars
  - Comparatively low strength, stiffness, adhesion properties
- Fibre Reinforced Cementitious Matrix
  - Emerged in last 5 years
  - Non-woven PBO fibre grids applied using modified inorganic mortars
  - Repairing damaged or deficient concrete
  - <u>Superior strength, stiffness, adhesion</u>



#### **Research Motivation**

- Thermal & mechanical performance in fire
  - A key issue in the application of any structural strengthening system
- Fire-rated, insulated externally bonded FRP strengthening systems are available
  - Current design guidance ignores the FRP during fire (even with insulation)
  - Ability of FRP strengthening systems to maintain structural effectiveness under load at high temperature remains unproven
  - Applications of FRPs are hindered
- It has been suggested that TRM/FRCM systems may outperform FRP systems during fire or in elevated temperature service



#### Background

• FRCM:

- Advantages over externally bonded FRP systems:
  - Installation and aesthetics
  - Breathability
  - Non-combustibility, zero flame spread
  - Mechanical performance at high temperature?



#### Current presentation:

- Pilot study into comparative performance of FRCM systems
- Tests at ambient & elevated temperatures
- Comparison against externally-bonded carbon/epoxy FRP strengthening systems

# **QUESTION:** How does FRCM compare with <sup>5</sup> FRP?

#### **OBJECTIVES**:

- Experimentally investigate the performance of FRCM flexural strengthening systems for reinforced concrete structures
  - In comparison with externally-bonded FRP systems
  - In bond-critical applications without supplemental anchors
  - At temperatures that they might experience if insulated and exposed to a standard fire scenario, or in elevated temperature service environments
- 2. Investigate the hypothesis that FRCM systems may provide superior retention of mechanical properties at elevated temperature as compared with externallybonded FRP

#### **Experimental Programme**



#### **Beam Specimens**

\* All dimensions in mm



#### **Shear Strengthening Scheme**

- Pilot tests demonstrated shear failures
- Remedial shear strengthening was required
  - Inverted U-wraps
  - shear strengthening without supplemental anchorage
  - Does not significantly affect the flexural strengthening



#### **Testing Matrix**

| Specimen<br>ID | Primer                  | Fibre<br>system              | Adhesive<br>system        | Target<br>test<br>temp.<br>(°C) | Duration<br>of<br>heating<br>(hrs) | No. of<br>beams |
|----------------|-------------------------|------------------------------|---------------------------|---------------------------------|------------------------------------|-----------------|
| PC 20          |                         |                              |                           | 20                              |                                    | 3               |
| FRP Nº1 20     | Primer Nº1 <sup>1</sup> | Carbon                       | Saturant Nº11             |                                 |                                    | 3               |
| FRP Nº2 20     | Primer Nº2 <sup>2</sup> | fibre <sup>3</sup><br>Carbon | Saturant Nº2 <sup>2</sup> |                                 |                                    | 3               |
| FRCM 20        |                         | x Mesh                       | X Mesh M750               |                                 |                                    | 3               |
| PC 50          |                         | Gold                         |                           | 50                              | 6                                  | 3               |
| FRP Nº1 50     | Primer Nº1 <sup>1</sup> | Carbon                       | Saturant Nº11             |                                 |                                    | 3               |
| FRP Nº2 50     | Primer Nº2 <sup>2</sup> | fibre <sup>3</sup><br>Carbon | Saturant Nº2 <sup>2</sup> |                                 |                                    | 3               |
| FRCM 50        |                         | fibre <sup>3</sup><br>X Mesh | X Mesh M750               |                                 |                                    | 3               |
| PC 80          |                         | Gold                         |                           | 80                              | 6                                  | 3               |
| FRP Nº1 80     | Primer Nº1 <sup>1</sup> | Carbon                       | Saturant Nº11             |                                 |                                    | 3               |
| FRP Nº2 80     | Primer Nº2 <sup>2</sup> | fibre <sup>3</sup><br>Carbon | Saturant Nº2 <sup>2</sup> |                                 |                                    | 3               |
| FRCM 80        |                         | x Mesh                       | X Mesh M750               |                                 |                                    | 3               |

<sup>1</sup> Commercially available epoxy primer and saturant system currently selling in Italy.

<sup>2</sup> Commercially available epoxy primer and saturant system currently selling globally.

<sup>3</sup> Commercially available unidirectional carbon fibre fabric currently selling in Italy.

### **FRCM Installation**



### **Testing Methodology**



#### Load vs. Displacement: Tests @<sup>12</sup> 20°C



#### Failure Modes: 20°C



#### Load vs. Displacement: Tests @14 50°C







#### Load vs. Displacement: Tests @16 80°C



Crosshead Displacement (mm)





#### **Effect of Temperature**



Strength reduction of FRCM beams may be due to reductions in shear strength of concrete at 80°C, rather than indicating damage to the FRCM

#### Aside: Characterization of Epoxy Resins

19

• DMTA testing on polymer primer & saturants



#### Conclusions

- The FRCM system can be effectively used, without supplemental anchorage, to strengthen RC beams in bending
- 2. Effects of Temperature:
  - FRP N°1 experienced reductions of 52% at 50°C and 74% at 80°C
  - FRP N°2 experienced reductions of 10% at 50°C and 64% at 80°C
  - FRCM experienced reductions of only 6% at 50°C and 28% at 80°C
    - May represent a reduction in the strength of the concrete rather than damage to the FRCM system
- FRCM appears to be a superior candidate for use in strengthening applications at temperatures of 25°C to 80°C

## Acknowledgements

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Figure_3.jpeg)

![](_page_20_Picture_4.jpeg)

Dr T Stratford, J Smith, S Halpin University of Edinburgh

# Thank you for your attention

For additional information email: <u>Luke.Bisby@ed.ac.uk</u>

![](_page_20_Picture_8.jpeg)

# **Aside:** Flame Spread & Combustibility

#### • FRP systems:

- Loss of the strengthening systems' mechanical performance during fire may not be critical if reasonable strengthening limits are imposed
- Structural performance is only one of many concerns in fire:
  - Fire severity and fuel load
  - Flame spread
  - Smoke generation and toxicity
- FRP strengthening systems often require flame spread coatings in interior applications to meet life-safety objectives in fire
- FRCM systems bonded with inorganic mortars:
  - Inherently non-combustible
  - Can be used unprotected
  - Reductions in material and installation costs
  - Improved aesthetics

#### **Aside:** Aging of Polymer Resins?

• DMTA testing after 3 hrs at high temperature

![](_page_22_Figure_2.jpeg)